Faculty of Engineering

Mechatronics Engineering

Duration 4 Years
Apply
CIU-biyomedikal-muhendisligi-programi-3 insaat-muhendisligi-doktora cevre-muhendisligi-yukseklisans

About the Department

Today, with the rapid improvement of technology in the sectors of machinery, electronics, computer hardware and computer software, alongside the development of industrial automation, we have started to use intelligent machines and robots in the industry, leading to a need for a new engineering field that can find a place in all stages of development of these new technologies. A mechatronic product consists of motor systems used for generating mechanical power, transferring power, sensors for sensing changes, microprocessor for controlling the system, and computer programs that control the entire system or machine in a central or distributed structure. Mechatronics engineering is a combination of mechanical engineering, electrical-electronics engineering and computer engineering in order to design and manufacture the above mentioned technologies. The Mechatronics Engineering Program trains qualified engineers who can utilize time, resources, and work power effectively and make technological designs by using current technology and engineering productivity in the most productive way, while considering environmental factors.

Education Opportunities

The Education and training activities in the Department of Electrical and Electronic Engineering are offered in laboratories equipped with state-of-the-art equipment, and in classrooms with all the up-to-date technological facilities. There are eight faculty members who have completed postgraduate degrees in qualified and well-known universities. Mechatronics engineering students also take courses from the Departments of Mechanical Engineering and Computer Engineering, as well as the Department of Electrical and Electronics Engineering. Thus, our courses are carried out in a multi-disciplinary manner and with the collaboration of students from different disciplines. The faculty is composed of experienced academics who continue their scientific studies in their own fields of expertise, by supervising theses for postgraduate students. The program is taught in English and due to this, our students will be able to easily follow references written in English and improve themselves, while working on their courses and practicing their profession throughout life.

ic-mimarlik-yukseklisans

Career Areas

Mechatronics engineering has a wide range of applications and working areas. It is a necessity for the human race to get help from machines to do challenging tasks, that require fine work and detailed in a way that is beyond human sensitivity, or too dangerous. Mechatronic engineers play a major role in designing and manufacturing these machines. Mechatronics engineering practices include: health robots, agricultural robots, the automotive industry, micro electromechanical systems (MEMS), flying robots, robot vision, industrial automation, smart weapons and weapons systems, micro robots, mobile robots, and industrial robots. Industrial companies operating in these fields throughout the world need qualified engineers and the Cyprus International University Mechatronics Engineering Program provides engineers with the qualifications needed by these companies.

Contact

Faculty of Engineering
Science and Technology Center, ST 226
Tel: +90 392 671 1111 Extension: 2401
Faculty E-mail: secretary-fe@ciu.edu.tr
Head of Department: Prof. Dr. Mehmet KUŞAF
Head of Department E-mail: mkusaf@ciu.edu.tr
 

Compulsory Courses

First Semester
GENERAL CHEMISTRY

Course code

CHEM110

Credit

4

Theoretical

3

Practical

2

Ects

6
In this course, Enginnering and Pharmacy Faculty students will learn types of matter, measurements, properties of substanes; atoms and atomic theory, components of the atom, introduction to the periodic table, molecules and ions, formulas of ionic compounds, names of ionic compounds; atomic masses, the mole, mass relations in chemical formulas, mass relations in reactions; measurements on gases, the ideal gas law, gas law calculations, stoichiometry of gaseous reactions, gas mixtures: Partial pressures and atomic spectra, the hydrogen atom, quantum numbers, atomic orbitals; shape and sizes; electron configurations in atoms, orbital diagrams of atoms; polarity of molecules; principles of heat flow, measurements of heat flow, calorimetry, enthalpy, thermo-chemical equations, enthalpies of formation, the first law of thermodynamics, liquids and solids.
INTRODUCTION TO COMPUTING

Course code

CMPE101

Credit

3

Theoretical

2

Practical

2

Ects

5
This course presents the basics of computer systems. The course is structured in two parts; including a short history of computers, the first part of this course presents the history, basic concepts and terminology of information technology, basic hardware and software components of a computer system, and integration of computer system components. Besides the terminologies and abbreviations, the students learn about the hardware setup of a personal computer and the relations between the processor, memory and secondary devices. The laboratory part includes basic computer usage and office programs (MS Word, Excel). In the second part, basics of problem solving approaches, components and construction of computer programs, flow-charting, and modular programming issues are discussed. Basics of C programming language are covered in classroom.
ENGINEERING DRAWING

Course code

CVLE101

Credit

3

Theoretical

2

Practical

3

Ects

5
The emphasis of Computer Aided Design is placed on drawing set-up; creating and modifying geometry; placing, rotating, and scaling objects; adding text and dimensions, learning orthographic and isometric drawing techniques in CAD; and learning basic methods for hand drawing for engineering drawings, learling orthographic and isometric drawing tehniques.
READING AND WRITING SKILLS-I

Course code

ENGL141

Credit

3

Theoretical

2

Practical

2

Ects

4
This course aims to develop students' listening, speaking, reading - writing and study skills. The course provides students with the opportunity to develop their communication skills through controlled activities and to equip students with the basic study skills necessary to follow the curriculum of English. This course also provides students with the opportunity to process the newly acquired knowledge and to develop their ability to ask questions about how to apply the new knowledge to new situations and ask them to think critically. In addition, this course will enable students to learn about the different strategies required to review the various reading pieces, such as finding the main idea and distinguishing the details from the main idea.
HISTORY OF CIVILIZATION

Course code

HIST100

Credit

0

Theoretical

2

Practical

0

Ects

2
The aim of this course is to outline the development of civilizations in the course of history. It firstly focuses on the concepts such as “Civilization”, “Prehistoric”, and “Historic” and on the factors forcing the emergence of the first civilizations. As well as examining the prehistoric periods and their characteristics in the course of human life since the first appearance of human beings on earth, the course mainly focuses on the early civilizations, namely the Mesopotamian, Egyptian, Aegean, Classical Greek, Hellenistic, Indian, Chinese and Roman Civilizations. Political, social, economical, cultural, intellectual, philosophical and scientific aspects in these entities are also examined in this course.
CALCULUS-I

Course code

MATH101

Credit

4

Theoretical

3

Practical

2

Ects

5
Calculus-I provides the methods of differential and integral calculus with applications in geometry, physics and engineering. Students in this course will learn how to use mathematical language needed for applying the concepts of calculus to numerous applications in science and engineering such as identifying types of functions, graph of functions, evaluating limit of functions, limit of elementary functions (polynomial, trigonometric, logarithmic, exponential,…), methods to solve the undefined limits (L’Hopitals Rule), continuous functions, evaluate derivative of functions, definition of derivative, derivative of elementary functions, derivative of product of two functions and division of functions, applications of derivative, evaluate integrals of functions, definition of the integral, integral of elementary functions, substitution method, integration by parts, integral of rational functions, application of the integral (finding the area) .
LINEAR ALGEBRA

Course code

MATH121

Credit

2

Theoretical

2

Practical

0

Ects

3
The aim of this course is to introduce the basic operations in linear algebra and applications in engineering problems; matrices, matrix properties and matrix operations: Addition, scalar multiplication, multiplication, transpose, solution of system of linear equations: Elimination method, Gauss Jordan forms, inverse method to solve linear systems, row reduced echelon forms, Gaussian elimination method, inverse and determinants: solving linear equations with determinant (Cramer's rule), use one row to evaluate determinant, minor, cofactor, adjoint matrix, identity matrix, square matrix of the matrices. Real vector spaces, vectors and their properties and applications in engineering: Addition, subtractions, dot product, scalar multiplication, cross product, basis, dimensions and subspaces.
MODERN TURKISH HISTORY

Course code

TARH100

Credit

0

Theoretical

2

Practical

0

Ects

2
In this course, Ottoman state and society, factors causing the collapse of the state; Ottoman modernization; Tripoli and Balkan Wars, World War I, Mudros Armistice and Sevres Agreement; parties and associations, the national resistance movement led by Mustafa Kemal, the Havza and Amasya Circulars, the Congresses, the National Pact, the Turkish Grand National Assembly; the rebellions, the regular army and the War of Independence; the Mudanya Armistice, the Lausanne Peace Treaty; Revolution in the political field, secularization of the state and society, abolition of the sultanate, declaration of the republic, abolition of the caliphate; 1921 and 1924 constitutions, constitutional changes; Sheikh Said Rebellion; Multi-party experience, secularization and modernization in law, nationalization and secularization in education, Kemalizm and 6 principles, Turkish foreign policy(1923-1938) are covered.
Second Semester
INTRODUCTION TO PROGRAMMING

Course code

CMPE112

Credit

4

Theoretical

3

Practical

2

Ects

6
The course will introduce basic and fundamental programming constructs and techniques through using the C++ programming language in order to generate algorithmic solutions to problems. Upon completion of the course, students will learn an introduction to algorithms, solving problems by flowcharts and pseudo codes, header files, data types, arithmetic & logic operators, control statements (if, if/else, switch-case) and use them as inner statements, loop statements (while, do/while, for), functions, standard functions of programming language, random number generation and their area of use, user-defined functions, global and local variables, recursion, arrays, searching algorithms on arrays, sorting algorithms on arrays, pointers, pointer operators, using pointers with arrays and functions. In the laboratory hours, students are supposed to write full programs or modify existing programs for other solutions.
DIGITAL LOGIC DESIGN

Course code

EELE221

Credit

4

Theoretical

3

Practical

2

Ects

5
This course presents the basic tools for the design and analysis of digital circuits and provides methods and procedures suitable for a variety of digital design applications in computers, control systems, data communications, etc. The course introduces data representation in binary systems, complements, Boolean algebra, logic gates, truth tables, logic circuits, timing diagrams, De Morgan's law, algebraic manipulation, minterms and maxterms, Sum of Products (SOP) and Product of Sums (POS) forms, Boolean function simplification tools and Karnough Map method, NAND and NOR implementations, don't care conditions, combinational circuit design and analysis procedures, and design of Adders, Subtracters and Code Converters.
READING AND WRITING SKILLS-II

Course code

ENGL142

Credit

3

Theoretical

2

Practical

2

Ects

4
This course is the continuation of ENG 101. The course aims to improve students' listening, speaking, reading, writing and working skills. In the course, students are guided in writing compare and contrast essays using Venn diagram. In addition, the aim of the course is to learn the necessary conjunctions for composition writing. In addition, the students will be able to write a four-part critical composition by learning the difference between ideas and factual real sentences and how to write the opposing opinion and sentences used to refute it. Thus, the students will be able to distinguish between the compare and contrast essay and discursive essay. Students will also be able to make presentations by using presentation techniques. In addition, this course aims to summarize the reading pieces of the students and to use the strategies of reading and to draw conclusions and meanings using their reading skills.
CALCULUS-II

Course code

MATH102

Credit

4

Theoretical

3

Practical

2

Ects

5
This course provides the methods of differential and integral calculus with applications in geometry, physics and engineering. Topics included are as follows: Sequences and infinite series, properties of sequences, test for convergence, tests for series with both positive and non-positive series, absolutely convergence and conditionally convergence . Power series, Taylor and Maclaurin series, the radius of convergence. Parametric equations and Polar coordinates, the graph of polar equations, the area in polar coordinates, arc length, speed on a curve and derivative of polar equations. Vectors and vector-valued functions, dot product and cross product of two vectors. Lines and Planes. Functions of several variables, their domain, limit and partial derivatives and definite integral of a function over a region.
INTRODUCTION TO MECHATRONIC ENGINEERING

Course code

MCTE100

Credit

0

Theoretical

1

Practical

0

Ects

2
This course is organized to explain the following concepts. Short history of Mechatronic Engineering. Definition, scope and occupation areas of Mechatronic Engineering. Interraction between related scientific and engineering fields. Academic staffs and main scientific subdivisions and laboratories of the department. Vision, mission, program objectives and outcomes of the department. Education plan and quality development program of the department.Student counseling system and surveying. Summer training, technical trips, seminars and meeting activities of the department. Social and universal impact of Mechatronic Engineering. Effective written and oral communication in engineering. Team work and project management in engineering. Etical and proffesional rules in engineering.Life long learning consept.
GENERAL PHYSICS-I

Course code

PHYS101

Credit

4

Theoretical

3

Practical

2

Ects

6
The aim of the course is to provide the basic information in order to help the students to understand the possible complicated problems in engineering. In this regard, the basic principles and methods of solving the problems in physics are thought. The course provides a basic grounding in elementary physics including mechanics. The basic subjects of the course are: Units and dimensions, Uniformly accelerated motion in one dimension, Freefall, Vector mathematics, Two dimensional motion, Newton’s laws of motion, Applications of Newton’s laws, Free body diagrams, Circular motion, Work and energy, Conservation of energy, Momentum, impulse, and collisions, Rotational kinematics, Torque, Static equilibrium. For completeness, the students are supposed to do 6 experiments related to the subjects of the course.
TURKISH LANGUAGE

Course code

TREG100

Credit

0

Theoretical

2

Practical

0

Ects

2
This course examines basic areas of language and expression. In the first half of the course, the theoretical approach to language is formed and the spelling rules of the Turkish language are studied. In the latter part of the course, language and narrative errors are studied together with editing. In the second half of the course, formal writing, curriculum vitae, petition, evaluation of the columns in terms of language and style, types of written expression and practice; Turkish production and application of shooting attachments; Turkish grammar structure; It is aimed to teaching subjects like phonetics of Turkish to students.
TURKISH

Course code

TURK100

Credit

0

Theoretical

2

Practical

0

Ects

2
This course provides an orientation to modern Turkish language for foreign students who wish to communicate in this language for their needs. It mainly focuses on the differences between Turkish and English Alphabets, especially the sounds and the letters which are not included in the English alphabet (i.e. Turkish letters ç-ğ-i-ö-ş-ü). In addition, basic grammar and sentence structure forms in Turkish are practised. The required grammar and vocabulary will also be developed through their adaptation to daily situations in contexts such as introducing yourselves, greeting, talking about the things they possess by using possessive adjectives, forming positive, negative and question sentences by using present simple, telling the time, talking about their own timetables, using demonstrative pronouns when describing the place of objects and becoming familiar with vocabulary related to family members.
Third Semester
ENGINEERING MECHANICS-I

Course code

CVLE211

Credit

4

Theoretical

4

Practical

1

Ects

6
The main purpose of this course is to provide the students with a clear knowledge of both theory and applications of engineering mechanics. General review of vector operations (addition, subtraction, dot and cross product) in two and three dimensions along with the introduction of force, position and moment vectors are given. Force system resultants, types of reactions and finding the equivalent of simply distributed loading are discussed. Equilibrium of a particle and a rigid body will be investigated within this course, followed by discussions about structural analysis, internal forces, shear force and bending moment diagrams. Friction, center of gravity, centroid and moments of inertia will also be introduced to the students.
MATERIALS SCIENCE

Course code

CVLE224

Credit

4

Theoretical

4

Practical

1

Ects

6
The main purpose of this course is to study the relationship between the structures and properties of materials. Review of interatomic and intermolecular forces and bonds, crystal structure, crystallographic directions and planes, amorphous structure, x-ray diffraction techniques, microscopic techniques, and various types of structural imperfections are discussed. Concepts of force, stress, deformation and strain. Mechanical properties of materials: Elasticity, plasticity, viscosity, introduction to the logical concepts. Properties related to strength: Stress-strain curves, true stress and true strain, ductility, brittleness, toughness, resilience and hardness are studied. The last part of the course includes discussions on the fracture mechanism, fatigue and creep.
DIFFERENTIAL EQUATIONS

Course code

MATH203

Credit

3

Theoretical

3

Practical

1

Ects

5
In this course, the ordinary differential equations and their applications will be considered. The course will demonstrate the usefulness of ordinary differential equations for modelling physical and engineering problems. Complementary mathematical approaches for their solution will be presented, including analytical methods. The basic content of the course includes first order ordinary differential equations and their types of exact, separable, Bernoulli, first order, homogeneous ordinary differential equations, linear independence of the solutions, higher order ordinary differential equations and their solutions. The undetermined coefficient methods, the variation of the parameter method, Cauchy-Euler equations. The definition of the Laplace transform and some important applications of the Laplace transform will be included in this lecture.
INTRODUCTION TO PROBABILITY AND STATISTICS

Course code

MATH205

Credit

4

Theoretical

4

Practical

1

Ects

6
The objective of this course is to introduce basic probability and statistics concepts. The focus of this course is on both applications and theory. Topics include: introduction to random variables, simple data analysis and descriptive statistics, frequency distribution, cumulative distribution, sample space, events, counting sample points (basic combinatorics), probability of an event, probability axioms, laws of probability, conditional probability, Bayes’ rule, discrete and continuous random variables, probability distributions, cumulative probability distributions, discrete and continuous probability distributions, discrete uniform, Binomial, Geometric, Hypergeometric, Poisson, Continuous uniform, Normal Disributions, Gamma and Exponential distribution, jointly distributed random variables, expectation and covariance of discrete and continuous random variables, random sampling, sampling distributions, distribution of Sample Mean, Central Limit Theorem(CLT).
GENERAL PHYSICS-II

Course code

PHYS102

Credit

4

Theoretical

3

Practical

2

Ects

6
This course provides the basic information to help the students to understand the possible complicated problems in engineering. The subjects of the course are mostly Electricity and Magnetism. The basic subjects of the course are Properties of electric charges, Coulomb’s law, and Electric field of a continuous charge distribution, Gauss’s law and electric flux. Application of Gauss’s law to charged insulators, Obtaining the value of the electric field from the electric potential, Electric potential and the potential energy due to point charges, Electric potential due to continuous charge distributions, Electric current, Resistance and Ohm’s law, Electromotive force, Resistors in series and in parallel. Kirchhoff’s rules. For completeness, the students are supposed to do 6 experiments all are related to the subjects of the course.
Fourth Semester
CIRCUIT THEORY I

Course code

EELE202

Credit

4

Theoretical

3

Practical

2

Ects

6
The course provides students with fundamental Concepts of Circuit Theory: Current, Voltage, Power and Energy as well as Definitions of Circuit Componentes: Voltage Current Sources; Resistors and Ohm's Law. Computation of Power over a Resistor, Set Up Circuit Model. Kirchhoff's Current and Voltage Laws. Resistors in Series and Parallel Configuration; Voltage and Current-Divider Circuits. Ampermeter, Voltmeter and Ohmmeter Circuits. Wheatstone Bridge, Triangle-Star Transformation. Loop Currents and Node Voltages Techniques, Source Transformation. Linearity and superposition principles, source transformations. Thevenin's and Norton's Theorems, Maximum Power Transfer, Graf Theory. Inductance and capacitance. The natural and forced response of the first – order (RL and RC) circuits. Natural and step responses of second-order RLC circuits.
LINEAR CONTROL SYSTEMS

Course code

EELE326

Credit

4

Theoretical

4

Practical

1

Ects

6
Concepts of modeling, and analysis of electromechanical systems in time and frequency domains, feedback and feed forward controllers, stability criteria, design of controllers. Physical systems and the concept of control systems, mathematical backgraund, mathematical modelling of physical systems, transfer functions, block diagrams, signal flow grapghs, state variables and state-space modelling, simulation diagrams and computer simulation of the systems, test signals and transient responses of first and the second order systems. Design in time and frequency domains. Root locus analysis and design, Stability of control systems. The concept of Routh-Hurwitz stability, Nyquist stability criterion, and Bode plots. PID controllers: analysis and design. Optimal control systems, intelligent control, introduction to digital control systems. Computer based simulations and applications related to all topics.
MATHEMATICAL METHODS FOR ENGINEERS

Course code

MATH202

Credit

4

Theoretical

3

Practical

2

Ects

5
Aim of this course is to give complex analyse and fundamental methods to solve numerical problems in mathematics, computer science, physical sciences and engineering. Topics included are as follows: Definitions: Error types, Taylor series and truncation error and rounding numbers. Numerical solution of nonlinear equations; Bracketing methods, Bisection and False position, Iterative methods: Fixed point and Newton method. Numerical methods for solution of linear systems, Iterative methods and LU decomposition methods. Interpolation and polynomial approximation, Lagrange polynomials, Least square lines, curve fitting and spline functions (linear and quadratic). Evaluate derivatives by numerical analysis, numerical differentiation, finite difference formulas. Evaluate integrals by numerical analysis, numerical integration, Simpson's rules and Trapezoidal rules. Complex numbers, complex functions, derivative and integral of complex functions.
ENGINEERING MECHANICS-II

Course code

MCLE222

Credit

4

Theoretical

4

Practical

1

Ects

7
Kinematics of rigid bodies.  2-D rigid body dynamics, D` Alembert`s principle. Energy Methods. Principle of impulse and momentum Angular momentum in 3-D Motion about a fixed axis. Un-damped vibration of rigid bodies.
STRENGHT OF MATERIALS

Course code

MCLE270

Credit

4

Theoretical

3

Practical

2

Ects

7
This course aims to show the Definition of stress, strain. Hook’s law. Constitutive relations for uni-axial stresses. Shearing stress and strain. Torsion of circular members. Thin walled pressure vessels. Relations between bending moment, shearing force and distributed loads. Bending of beams with symmetrical sections. Bending of composite beams.
Fifth Semester
ELECTRONICS I

Course code

EELE341

Credit

4

Theoretical

3

Practical

2

Ects

7
Operational amplifiers: common mode and difference mode process. Op-amp applications: voltage adder, voltage follower, differential amplifier, derivate and integrator circuits, active filter design. Semiconductor elements and diodes. Diode equivalent circuits. LEDs and zener diodes. Load line analysis. Half-wave and full-wave rectifier circuits. Bipolar junction transistor: Operation limits of transistors, testing and electrical specifications. DC biasing of transistors: Determining of operation point, voltage divider biasing, voltage feedback biasing and other biasing types. Transistor switching circuits. PNP transistors and stability of biasing. Characteristic of field effect transistors. Depletion-type MOSFETs, Enhancement-type MOSFETs, VMOS and CMOSs. Biasing of field effect transistors. Self-biasing and voltage divider biasing. Biasing of depletion-type MOSFETs and enhancement-type MOSFETs. Other two gates: Varactor, power diodes, tunnel diode, photodiode.
THERMODYNAMICS

Course code

ENRE301

Credit

4

Theoretical

3

Practical

2

Ects

7
This course starts with basic concepts and their definitions and moves on to solving examples relating to power, heat and energy. Thermodynamic related properties of pure substances, Equation of state, work and heat, Zeroth law of thermodynamics, First Law of thermodynamics, Ideal and real gases, Internal energy and enthalpy, Second law of thermodynamics, Entropy are introduced. Application of thermodynamic principles starts with the Carnot cycle, steam power cycles, gas power cycles, Otto and Diesel power cycles and ends with refrigeration cycles. Use of thermodynamic properties in designing systems, the effect of parameters is covered. The course also includes practical work in the laboratories and simple design projects based on the use of thermodynamic properties.
ELECTROMECHANICAL ENERGY CONVERSION

Course code

ENRE305

Credit

4

Theoretical

3

Practical

2

Ects

5
This course analyzes magnetic materials, magnetic parameters and magnetic properties of the materials. Application of soft magnetic materials and magnetic circuits are also involved in the course. Single phase transformers are analyzed in two categories such as ideal transformers and real transformers. Special purpose transformers such as auto-transformers and their power rating advantage are analyzed. This course also aims to examine three-phase transformers and their functions in power distribution systems. DC machinery fundamentals, simple rotating loop, power flow and losses of real DC machines, analysis of shunt and series connected DC machines and DC generator fundamentals are also take significant part in the course.
DYNAMICS OF MACHINERY

Course code

MCLE301

Credit

4

Theoretical

4

Practical

1

Ects

6
The aim of this course is to study the Mechanical vibrations: 2-DOF  vibrating systems, vibration measuring instruments, numerical methods for multi-degree of freedom systems, Dunkerley’s equations, vibration of continuous systems, random vibrations. It also aims to study the Balancing of machinery: rigid rotors, reciprocating machines, flywheels, planar linkages, balancing machines and instrumentation. Cam dynamics, gyroscope and governors.
MACHINE ELEMENTS I

Course code

MCLE371

Credit

3

Theoretical

3

Practical

1

Ects

5
The course covers fundamentals of machine design which include: general design rules, safety factor, load analysis, materials selection, stress, and strain and deflection analysis. Failure theories for static loadings, importance of tensile test and other tests, the concepts of reliability and safety, tolerances and fits. Importance of stress concentrations, use of stress concentration data; and introduces design guidelines.Also included are: designs of shafts, couplings and connections, design of permanent and non-permanent joints, and the design of helical compression, tension and torsion springs. Failure of components under dynamic loadings, compound loadings. Design of bolted and riveted joints, type of bolt and riveted joints.
Sixth Semester
SIGNALS & SYSTEMS

Course code

EELE321

Credit

4

Theoretical

4

Practical

1

Ects

7
Classification of Signals and Basic Signal Properties. Time Domain Models of Linear Time Invariant (LTI) Systems: Continuous time systems. Causal LTI systems described by differential equations. System block diagrams. The solutions of differential equations. The unit impulse response and convolution integral. State variable analysis of LTI systems. Discrete time systems. The unit sample response and discrete convolution. Fourier series and Fourier transform representation of continuous-time and discrete- time periodic signals. Time and frequency characterization of signals and systems. Z-transform and inverse z-transform. Region of convergence of the z-transform. z-domain analysis of discrete LTI systems. LTI Systems With Random Inputs. Definition of Random variables, stochastic process, first and second order statistics, moment, correlation and co-variance, stationary process, ergodicity. System resonse.
MICROPROCESSORS

Course code

EELE324

Credit

4

Theoretical

3

Practical

2

Ects

7
The Microprocessors course includes the understanding of the main components and working principals of the microprocessor. Intel 80x86 family is used as a base microprocessor architecture. Course content includes the understanding of the basic computer architecture, memory organization and memory interfacing, programming and debugging in assembly language, developing programs that perform unsigned arithmetic (addition, subtraction, multiplication, and division), BCD, ASCII, logical and bitwise manipulation operations, performing input/output device programming in assembly language, input characters or strings from keyboard, output characters or strings to the screen, convert data to ASCII, packed BCD, unpacked BCD. Also, understanding the properties and interfacing of the parallel and serial ports and the design and interfacing of microprocessor-based systems using the real world example of the 80x86 IBM PC are in the scope of the course.
MANUFACTURING TECHNOLOGY

Course code

MCLE312

Credit

4

Theoretical

4

Practical

1

Ects

7
Fundamentals and principles of major manufacturing processes: metal casting, casting methods, comparison of castings, casting equipment, automation of casting method. Powder metallurgy, comparison of powder metallurgy with casting. Bulk deformation, deep drawing, extrusion, hot and cold rolling, sheet metalworking, heat treatment of raw material and products. Processing of polymers, ceramics, glass, rubber and composites. Metal cutting: cutting conditions, forces, temperatures, tool life, surface finish, coolants. Cutting tool materials. Principles, tools and process capabilities of basic machining operations: turning, milling, drilling, planning, shaping, boring, broaching. Gear manufacturing. Abrasive operations: grinding, finishing operations. Non-traditional processes. Basics of joining and assembling. Fusion and solidstate welding, types of fusion welding methods, bolted joints, screwed joints, riveted joints.
MECHATRONICS COMPONENTS AND INSTRUMENTATION

Course code

MCTE326

Credit

3

Theoretical

3

Practical

1

Ects

4
This course offers a comprehensive introduction to mechatronic components and instruments. It covers sensor concepts including transfer function, range, sensitivity, errors, calibration, accuracy, precision, and linearity. Students explore sensors for position, displacement, level, flow, occupancy, velocity, acceleration, force, and strain. The course also delves into transducers, machine vision, actuating systems, information and cognitive systems, and mechatronic instrumentation. It provides a solid foundation in measurements, data acquisition, sensors, and programming tools. Additionally, students learn about experimental design, uncertainty analysis, measurement system behavior, and data analysis techniques. Upon completion, students will proficiently evaluate mechatronic systems, equipped with a comprehensive understanding of mechatronic principles.
AREA ELECTIVE

Course code

MCTEXX1

Credit

3

Theoretical

3

Practical

0

Ects

5
AREA ELECTIVE
Seventh Semester
ROBOTICS

Course code

EELE411

Credit

3

Theoretical

3

Practical

1

Ects

5
This course introduces fundamentals of robot control. Brief review about robots, hardware and robot problems will be explained to give a general idea about the use of robotics. Various types of basic sensors are also be discussed under the issue of robot hardware. Agent function design will be taught to gain robot control algorithm development and design. Robot control programming with mostly used controllers and related programming language concepts will also be covered to improve hardware programming skills of participants of this course. Lectures give the background to the extensive hands-on practical work using the laboratories A practical project will be performed to have an experience about to control a real robots with microcontroller.
PROJECT MANAGEMENT

Course code

ENGI401

Credit

3

Theoretical

3

Practical

0

Ects

4
This course is designed to focus on project management framework, project integration management, project scope management, project communication management and teamwork, health & safety, engineering ethics, environmental management, risk management and sustainability, entrepreneurship and feasibility report, legal aspects in project management. This course also prepares the senior students to select their capstone design projects and form teams. The students undertake literature review for their projects, prepare feasibility report, and a written/oral presentation at the end of the term.
EXPERIMENTAL METHODS

Course code

MCLE403

Credit

3

Theoretical

2

Practical

3

Ects

5
In this course students will be exposed to Principles and methods of experimentation. Sensing devices, measuring devices and their limitations.  Designing and planning experiments; data analysis, error analysis and uncertainty analysis. Performing and reporting of experiments.
COMPUTER AIDED DESIGN

Course code

MCLE475

Credit

3

Theoretical

2

Practical

3

Ects

6
This course aims to study the Integration of computers into the design cycle. Interactive computer modelling and analysis. Geometrical modelling with wire frame, surface, and solid models. Finite element modelling and analysis. Curves and surfaces and CAD/CAM data exchange. The integration of CAD, CAE and CAM systems.
SUMMER TRAINING

Course code

MCTE300

Credit

0

Theoretical

0

Practical

0

Ects

5
Engineering summer training is the thirty working days internship period in which the engineering students are expected to apply their theoretical knowledge, which they acquired during their undergraduate studies, in a professional environment. Summer training can be performed at any institution which is involved in any of the Electrical and Electronic Engineering or Mechanical Engineering subdisiplines. During the training, the engineering students encounter with the professional life tasks, so that they have a better chance to prepare themselves for the industries’ needs and decide on their exact field of professional interests. At the end of the thirty days of training, which is performed after the third year of the bachelor studies, the students write their summer training reports which summarize their internship experience.
AREA ELECTIVE

Course code

MCTEXX2

Credit

3

Theoretical

3

Practical

0

Ects

5
AREA ELECTIVE
Eighth Semester
CAPSTONE PROJECT

Course code

ENGI402

Credit

4

Theoretical

2

Practical

4

Ects

8
This course is an interdisciplinary project based course involving engineering design, cost estimating, environmental impacts, project schedule and team work. Students are expected to work in pre-assigned team under the supervision of faculty on a predetermined project. Each team will submit a final report including drawing, specification, and cost estimate that completely describe their proposed design. Each team will make oral presentation defending their final design and project feasibility to peers and faculty members.
ENGINEERING ECONOMY

Course code

INDE232

Credit

3

Theoretical

3

Practical

0

Ects

4
The purpose of this course is to provide an introductory basis for economic analysis in decision making process in engineering design, manufacturing equipment and industrial projects. This course aims to supplement engineering students with the knowledge and capability to perform financial analysis especially in the area of capital investment. It emphasizes the systematic evaluation of the costs and benefits associated with proposed technical projects. The student will be exposed to the concepts of the “time value of money” and the methods of discounted cash flow. Students are prepared to make decisions regarding money as capital within a technological or engineering environment. Assignments and homework help and guide the students to apply the knowledge acquired during the course.
AREA ELECTIVE

Course code

MCTEXX3

Credit

3

Theoretical

3

Practical

0

Ects

5
AREA ELECTIVE
AREA ELECTIVE

Course code

MCTEXX4

Credit

3

Theoretical

3

Practical

0

Ects

5
AREA ELECTIVE
UNIVERSITY ELECTIVE

Course code

UNIEXX1

Credit

3

Theoretical

3

Practical

0

Ects

4
UNIVERSITY ELECTIVE
UNIVERSITY ELECTIVE

Course code

UNIEXX2

Credit

3

Theoretical

3

Practical

0

Ects

4
UNIVERSITY ELECTIVE

Elective Courses

PROGRAMMING IN MATLAB FOR ENGINEERING

Course code

ENGI316

Credit

3

Theoretical

3

Practical

0

Ects

WIND ENERGY TECHNOLOGY

Course code

ENRE312

Credit

3

Theoretical

3

Practical

0

Ects

The main objective of the course is to present an overview of wind energy, covering all aspects from operation of a wind turbine to planning a wind farm. The course introduces the facts governing the availability and exploitation of wind power, the reasons for wind energy utilization, and, instructs the students to conduct a wind resource estimation. The fundamental concepts of wind turbine design and operation, types of wind turbines, the economic, technical and environmental factors affecting wind turbines and respective type selection are covered. Planning, installation, commissioning and economic analysis of wind farms are also discussed within the scope of this course.
CONVENTIONAL AND ALTERNATIVE ENERGY RESOURCES

Course code

PNGE452

Credit

3

Theoretical

3

Practical

0

Ects

0
The potential problems surrounding the use of fossil fuels, particularly in terms of climate change, contributing to global warming became a real concern for the humanity and the eco-system. Today, there is a growing shift towards environmental awareness and the the current energy-mix is coming under closer scrutiny leading to the rise of cleaner alternative energy sources. While the viability of each can be argued, they all contribute something positive when compared to fossil fuels.Lower emissions, lower fuel prices and the reduction of pollution are all advantages that the use of alternative fuels can often provide. Understanding the basic characteristics as well as pros and cons of both the conventional and alternative sources is a prerequisite for a sustainable future.
HEATING VENTILATION AND AIR CONDITIONING

Course code

MCLE443

Credit

3

Theoretical

3

Practical

0

Ects

5
Psychrometrics and elementary psychrometric processes; simultaneous heat and mass transfer in external flows; direct contact transfer devices; heating and cooling coils-compact heat exchangers; thermal comfort; hot water heating systems; heating and cooling load calculations; vapor compression refrigeration cycles.
MACHINE DESIGN

Course code

MCLE476

Credit

3

Theoretical

3

Practical

0

Ects

DIGITAL SIGNAL PROCESSING

Course code

EELE420

Credit

3

Theoretical

3

Practical

0

Ects

PROGRAMMABLE LOGIC CONTROLLERS

Course code

EELE415

Credit

4

Theoretical

3

Practical

2

Ects

6
The aim of this course is to provide an introduction to programmable logic controllers. The basic architecture of PLCs and the commonly used input and outputs in such systems are included in the course. The relationship between the PLC operation and the Logic gates are stated. The programming languages which are used in PLC are examined. Furthermore, the Ladder Diagram technique is developed involving internal relays, timers and counters. The course includes compare and program control instructions. Both 16 and 32 bit operations are used in basic math instructions. It also includes the examples of important industrial applications that uses PLC.
EMBEDDED SYSTEMS

Course code

CMPE455

Credit

3

Theoretical

3

Practical

0

Ects

5
This course introduce the basic knowledge of embedded systems on programmable chips. The given information will help to develop the ability to understand the concept of embedded systems in offline and online applications. The main aim of this course is to give students not only theoretical knowledge but also practical knowledge about different embedded systems. In addition, the common features of embedded systems and partitioning features such as inputs, outputs, interrupts and scheduling techniques will be covered in the course. Depending on the different embedded system types, these systems will be programmed using the relevant programming languages. Finally, various hardware-software designs and development tools will be introduced to broaden students' fundamental knowledge.
DIGITAL CONTROL SYSTEMS

Course code

EELE403

Credit

3

Theoretical

3

Practical

1

Ects

This course introduces digital control and discrete transform (z-transform). Introduction to sampled data and discrete modeling of systems. Discrete and hybrid Signal Flow Graphs (SFG)s. Students will learn designing controllers and applying compensation techniques both in s and z domains.The topics are: Review Of The Root Locus Method. Controller Design in S-Domain. Frequency Response Methods.Implementation of a Control Law on a Microprocessor.Sampling and Reconstruction.Digital Design: Introduction to Z- Transform.Open Loop and Closed Loop Discrete Time Systems.The S - Z Plane Mapping, Second Order Desired Response.Z - Plane Root Locus.Controller Design in Z - Plane, PI Controllers.Controller Design in Z - Plane, Pole-Zero Compensation and PID Controllers. Stability
ADVANCED DIGITAL ELECTRONICS

Course code

EELE322

Credit

3

Theoretical

3

Practical

1

Ects

0
.
ARTIFICIAL INTELLIGENCE

Course code

CMPE415

Credit

3

Theoretical

3

Practical

1

Ects

7
This course teaches artificial intelligence from an intelligent systems perspective which includes the methods (tools) to build systems that can plan, learn, reason and interact intelligently with their environment. The course introduces the key components of the artificial intelligence (AI), the agent-based AI architecture, artificial intelligence techniques to solve problems for a particular domain, appropriate search methods in achieving desired goals, and knowledge representation using various techniques. The topics are as follows: intelligent agents, problem solving, uninformed search strategies, informed search strategies, knowledge representation, logical inference, propositional logic, first-order logic. The artificial intelligence methods studied are experimented using a programming language and the students are expected to complete a project related to an artificial intelligence algorithm with its software implementation.
ENERGY EFFICIENCY AND MANAGEMENT

Course code

ENRE308

Credit

3

Theoretical

3

Practical

0

Ects

5
This course includes the identification of the energy conservation measures in various equipment and utilities. Practical aspects of energy conservation and how to use the various rules of thumb to estimate the losses occurring in a system are stated. This course also reviews the scientific foundations and principles of energy use and management. In addition, energy efficiency and energy conservation measures are also discussed in the basis of economic and life cycle cost analysis. The goal is to help students develop sufficient understanding of energy issues to contribute successfully in managing their own energy budget and in developing business applications and improving policy. Energy efficiency in lighting, building envelope and ventilation systems is discussed.
BIOMEDICAL ENGINEERING AND INSTRUMENTATION

Course code

BIOE303

Credit

3

Theoretical

2

Practical

2

Ects

5
The objective is to develop a fundamental understanding of the principles of biomedical measurement systems used in the fields of molecular biology and biotechnology, cell engineering, tissue engineering, and biomaterials used in medicine. Applications, diagnosis and treatment, biomedical instrumentation administration, security issues, biomedical technology and the biomedical engineer, their present and future. This course covers physiological signals, biomedical sensors, analogue signal amplification and filters, digital acquisition, digital filtering and processing, and an overview of several common medical instrumentation platforms. Digital processing of biological signals, physiology of the heart and electrocardiogram (ECG), blood pressure measurements, physiology of the brain and electroencephalogram (EEG), Electromyography, Electromechanics of biological fluids.
GEOTHERMAL ENGINEERING

Course code

PNGE391

Credit

3

Theoretical

3

Practical

0

Ects

5
Within the scope of this course, the students will be given an introduction to the physical and technical aspects of geothermal energy systems. Topics covered will include the basic principles and information related to geological rock formations and relevant porosity, permeability and hydrology, heat transfer and flow mechanisms in porous media. Furthermore, a thorough study of heat exchange systems, various types of geothermal reservoirs and facilities, and design aspects will be intensively discussed with the students. Geothermal engineering course will also extensively survey political, economic, ecological, and social aspects of geothermal energy development in various regions all around the globe.
IOT FOR ENGINEERING

Course code

ENGI416

Credit

3

Theoretical

2

Practical

2

Ects

5
This course is designed to explore the intricate world of Internet of Things (IoT) technologies with a focus on providing engineering students a comprehensive understanding from the ground up. Throughout the course, students will master IoT device programming, exploring different platforms, as well as analyzing sensing and actuating technologies. The course emphasizes networking principles, backhaul design strategies, and security enforcement relevant to IoT systems. Students will engage in practical assignments aimed at providing real-world experience. The projects include deploying a distributed Wi-Fi monitoring service and creating a cloud-based IoT service platform tailored for industrial settings. Upon completion of this course, students will gain a comprehensive understanding of IoT technologies and will be equipped to tackle challenges commonly encountered in industrial engineering environments.
THERMAL SYSTEMS DESIGN

Course code

MCLE445

Credit

4

Theoretical

3

Practical

2

Ects

6
This course analysis, design and optimization of thermal systems using microcomputers; modelling of thermal systems and components; analysis of thermal system component characteristics and their effect on overall system performance; relationship among thermal sciences in design process; safety, reliability and economic considerations of thermal system.
INTRODUCTION TO CRYPTOGRAPHY AND NETWORK SECURITY

Course code

CMPE336

Credit

3

Theoretical

3

Practical

0

Ects

Introducing the main concepts used in the modern cryptography is the main aim of the course. Mathematical concepts necessary for the modern crypt-algorithms are in the scope of the course. Classical encryption techniques are studied in the first chapters. Block ciphers and Date Encryption Standard (DES) is one of the main objectives of the course. Also, Advanced Encryption Standard (AES) algorithm is studied in details. Public key cryptography and RSA algorithm theory and implementations are the last topics for encryption models. The course ends with network security concepts and IP security standards. The students are expected to improve their skills with a project that requires the implementation of a cryptography algorithm and encryption/decryption of real data through the network.
ENERGY SYSTEMS MODELING, ANALYSIS AND SIMULATION

Course code

ENRE304

Credit

4

Theoretical

3

Practical

2

Ects

7
This course covers the three main aspects of energy systems engineering; modeling, analysis and simulation. The analysis and modeling involve applications of forecasting, design, economics, and optimization. The course introduces the modeling and analysis concepts and covers preliminary data analysis in energy systems. Forecasting techniques discussed in the course, such as linear and polynomial regression, help the students to predict the performance of the energy systems. The covered optimization techniques instruct the students in configuring the optimum systems (in terms of both finance and performance). The course uses multiple modern simulation tools to model both conventional and renewable energy technologies.
ETHICS

Course code

INDE335

Credit

3

Theoretical

3

Practical

0

Ects

4
The aim of this course is to awaken a sense of moral responsibility as decision makers. It can be happen by giving the moral imagination of students, helping students to recognize ethical issues and think ethically about the possible outcomes of making decisions, developing analytical skills on how to analyze an ethical situation and use neutral techniques to make an ethically optimal decision. This course is designed to introduce moral rights and responsibilities of engineers in relation to society, employers, colleagues and clients. Importance of intellectual property rights and conflicting interests. Ethical aspects in engineering design, manufacturing, and operations. Cost-benefit-risk analysis and safety and occupational hazard considerations.
ENGINEERING MANAGEMENT

Course code

INDE282

Credit

3

Theoretical

3

Practical

0

Ects

4
Review the enginnering management functions of planning, organizing, leading and controlling. Also, techniques of management, the matrix system of management, motivation, appraisal systems and prepare engineering students to become effective leaders in meeting the challenges in the new millenium. The course tries to give information in technical (an understanding of and proficiency in engineering and science); human (the ability to build a collaborative effort within a group); conceptual (the ability to apply analytical thought to the management process and to enterprise as a total system). Throughout the Engineering Management course, emphasis is placed on team-based approaches, written and oral communications skills, management of technology and continuous improvement.
CLOUD COMPUTING

Course code

CMPE481

Credit

3

Theoretical

3

Practical

0

Ects

COMPUTER AIDED DATA ANALYSIS

Course code

INDE491

Credit

3

Theoretical

3

Practical

0

Ects

OCCUPATIONAL HEALTH & SAFETY

Course code

INDE492

Credit

3

Theoretical

3

Practical

1

Ects

6
The course includes, work safety and worker safety concepts; work accidents and types; occuppational diseases and protecting from such diseases; ergonomy; electrical and non-electrical tools used in working mediums; personal protective equipment; first aid; fire, explosives and natural disasters; duties of workers, authorities and government departments. Also, this course is designed to introduce the engineering student with the basic principles of occupational safety and health management in industry. Development of safety and health function, hazard problems, concepts of hazard avoidance, impact of regulations, toxic substances, environmental control, noise, explosive materials, fire protection, personal protection and first aid will be introduced.
COMPUTER SIMULATION

Course code

CMPE485

Credit

3

Theoretical

3

Practical

0

Ects

THERMAL POWER ENGINES

Course code

MCLE446

Credit

3

Theoretical

3

Practical

0

Ects

SURGICAL INSTRUMENTATION

Course code

MEDE402

Credit

3

Theoretical

3

Practical

0

Ects

ENVIRONMENTAL IMPACT ASSESSMENT

Course code

ENVE402

Credit

3

Theoretical

3

Practical

0

Ects

The objective of this course is provide knowledge on environmental impacts and environmental impact assessment. The course content includes history and basics of environmental impact assessment; framework and legal considerations for impact assessment; predictions of impacts on air, soil and water quality, noise level, and the biological environment; methods of impact analysis; public participation in the environmental impact assessment process; environmental impact assessment reports. Examples of previously used environmental impact assessment reports of various engineering projects are studied as cases studies in the lectures. The course uses lecture notes and discussions for the theoretical information and a term project practicing on how to conduct an environmental impact assessment on an imaginary project learning to use the theory in practice.
MANAGEMENT INFORMATION SYSTEMS

Course code

ISYE363

Credit

3

Theoretical

3

Practical

0

Ects

4
This course is for students who wanted an in-depth look at how today’s business firms use information technologies and systems to achieve corporate objectives. Information systems are one of the major tools available to business managers for achieving operational excellence, developing new products and services, improving decision making, and achieving competitive advantage. Students will find here the most up-to-date and comprehensive overview of information systems used by business firms today. When interviewing potential employees, business firms often look for new hires who know how to use information systems and technologies for achieving bottom-line business results. Regardless of whether you are in finance, management, marketing or information systems major, the knowledge and information students will find in this course will be valuable throughout their career.
ELECTRICAL MACHINERY

Course code

EELE453

Credit

3

Theoretical

3

Practical

1

Ects

6
AC Machine Fundamentals; The Rotating Magnetic Field; Magnetomotive Force and Flux Distribution in AC Machines; Induced Voltage in Ac Machines; Distributed Windings in AC Machines; Induced Torque in AC Machines; AC Machine Power Flows and Losses; Synchronous Generators; Synchronous Generator Construction; The Speed of Rotation of a Synchronous Generator; The Equivalent Circuit Synchronous Generator; The Phasor Diagram of Synchronous Generator; Power and Torque in Synchronous Generator, Measuring Synchronous Generator Model Parameters; Alone and Parallel Operation of Synchronous Generators; Synchronous Generator transients; Synchronous Motors; Steady State Synchronous Motor Operation; Starting synchronous Motors; Induction Motors; Construction and Motor Concepts of Induction Machine; The equivalent Circuit of and Induction Motor; Power and Torque Induction Motor; Torque-Speed characteristics; Speed Control of Induction Motors; Solid-State Induction Motor Drives; Determining Circuit Model Parameters; Induction Generator; Induction Frequency Changers ; Ratings
ENVIRONMENTAL MANAGEMENT

Course code

ENVE407

Credit

3

Theoretical

3

Practical

0

Ects

5
This course is an introduction to the interaction among social, political, cultural, ecological and economic factors in the field of environmental management and is centrally concerned with understanding deliberate efforts to translate environmental knowledge into action in order to achieve particular outcomes in the way landscapes, societies and/or natural ecosystems are used and managed. The course will provide a critical survey of the contemporary field of environmental policy, planning and management. It will also consider how the objectives for land and resource use are shaped, fashioned and contested in democratic and non-democratic settings. Student’s will be tought dynamics and processes that impact ecological systems and they will understand the basic components of a sustainable development framework, study concepts of sustainable development theory and practice.
MOBILE APPLICATION DEVELOPMENT

Course code

CMPE425

Credit

3

Theoretical

3

Practical

0

Ects

Introduction to Mobile Application Development, Mobile Application Platforms, Object-Oriented Programming, Java,XML and Hello Android Application, Activities, Fragments, and Intents, Getting to Know the Android User Interface, Designing Your User Interface with Views, Displaying Pictures and Menus with Views, Data Persistence, Location-Based Services, Networking- Consuming Services, Publishing Android Applications
WELL LOGGING

Course code

PNGE350

Credit

3

Theoretical

3

Practical

0

Ects

6
The course is designed to convey the understanding of well logging to the students. When exploration drilling is carried out usually at greater depths, the cores and sludghes obtained give significant information about the underground. However, especially when petroleum and natural gas exploration is in question, extra geophysical information is required to arrive at a result. In this context, the following topics will be underlined: Introduction to the fundamental concepts in well logging, necessary equipment for well logging, characteristics of well logging equipment, investigation of the nearby wellbores and geological-geophysical characteristics, electrical properties of different rock types, SP log, normal and lateral logs, laterologs, dual laterolog, induction logs, dual induction log, microresistivity logs, conventional interpretation techniques, computer aided interpretation techniques with specialized softwares.
CONVENTIONAL AND ALTERNATIVE ENERGY RESOURCES

Course code

PNGE452

Credit

3

Theoretical

3

Practical

0

Ects

0
The potential problems surrounding the use of fossil fuels, particularly in terms of climate change, contributing to global warming became a real concern for the humanity and the eco-system. Today, there is a growing shift towards environmental awareness and the the current energy-mix is coming under closer scrutiny leading to the rise of cleaner alternative energy sources. While the viability of each can be argued, they all contribute something positive when compared to fossil fuels..Lower emissions, lower fuel prices and the reduction of pollution are all advantages that the use of alternative fuels can often provide. Understanding the basic characteristics as well as pros and cons of both the conventional and alternative sources is a prerequisite for a sustainable future.
ARTIFICIAL ORGANS

Course code

BIME404

Credit

3

Theoretical

3

Practical

0

Ects

COAL GAS PRODUCTION

Course code

PNGE392

Credit

3

Theoretical

3

Practical

0

Ects

5
Considering the importance of unconventional energy sources due to ever-growing demand, the aim of the current course is to familiarize the students with the origins, reserves, exploration, and production of coal gas (Coal Bed Methane and shale gas) from relevant reservoirs. Within the scope of the course, different types of Coal Gas reserves will be explained comprehensively. Detailed elaboration on both technical and economic aspects of development of the field is also included. Case studies from around the globe will be covered in the course, as well. The course is adjourned with a case study of development of coal gas reserves.

TR Applicants

TR Students who are successful in the exams conducted by the Higher Education Council Student Selection and Placement Center (ÖSYM) and are entitled to enroll in our university in line with their preferences can complete the registration process with the necessary documents for registration from our Registration and Liaison Offices throughout Turkey or from the Marketing Directorate on campus.

Click for detailed admission requirements information.

TRNC Applicants

TRNC citizens and TR citizen candidate students who have completed their entire high school education in TRNC. They are placed in undergraduate programs in line with their success in the CIU Student Placement and Scholarship Ranking Exam and the programs they prefer.

Students who are successful in the exam can register from the TRNC Marketing Office.

Applicants can directly apply online to our undergraduate programs by using the application portal. Please fill in your details correctly and upload all the required documents listed on the last page of the application form.

Required documents;

  • Completed application form,
  • Higher/Secondary Certificate or equivalents (e.g. O/A’Level, WAEC/NECO)
  • Evidence of English Language competence: TOEFL (65 IBT) or IELTS (5.5). Students without these documents will take the CIU English proficiency exam on campus following arrival,
  • Scanned copy of international passport/birth certificate,
  • Fully completed and signed CIU Rules and Regulations document (which can be downloaded during the online application).

Cyprus International University provides academic scholarships for its students as an incentive for success, with most students benefiting from 50%, 75% or 100% scholarships or discounted tuition fees. Click for more information.

Tuition Fees are determined at the beginning of each academic year. Candidate students who are entitled to enroll in CIU can learn their fees in line with the Tuition Fee Calculation system.

Program Outcomes

Mechatronics Engineering program outcomes cover all knowledge, skills and behavioral components necessary to achieve the educational objectives of the program.

PO1:  Have sufficient knowledge of the topics specific to the disciplines of mathematics, science and mechatronics engineering; acquire the ability to use theoretical and practical knowledge of these areas in complex engineering problems.
PO2:   Have the ability to identify, define, formulate and solve complex engineering problems related to mechatronics engineering; acquire the ability to select and apply appropriate analysis and modeling methods for this purpose.
PO3:   Have the ability to design a complex system, device or product related to mechatronics engineering by applying modern design methods under authentic constraints and conditions to meet specific requirements.
PO4:   Have the ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in mechatronics engineering practices; have the ability to use information technologies effectively.
PO5:   Have the ability to design and conduct experiments, collect data, analyze and interpret results to investigate complex mechatronics engineering problems or discipline-specific research topics.
PO6:   Have the ability to work effectively in disciplinary and multidisciplinary teams and individually.
PO7:   Have the ability to communicate effectively in oral and written English; have knowledge of at least one foreign language; write effective reports and understand written reports, prepare design and production reports, make effective presentations, give clear and understandable instructions.
PO8:   Have the awareness on the necessity of lifelong learning; gain the ability to access information, follow developments in science and technology and continuously renew their knowledge and skills.
PO9:   Behave in accordance with the ethical principles, show awareness of professional and ethical responsibility; learn about the standards used in engineering practices.
PO10: Have knowledge of business practices such as project management, risk management and change management; awareness of entrepreneurship and innovation; have knowledge about sustainable development.
PO11: Have knowledge about the impact of mechatronics engineering practices on health, environment and safety at universal and social levels as well as the problems of the current era; have knowledge about the legal consequences of engineering solutions.